686 | 3 | 35 |
下载次数 | 被引频次 | 阅读次数 |
采用真空抽滤-压力喷涂的方法,以聚酰胺纳滤膜为基膜,制备了氧化石墨烯和二氧化钛纳米粒子质量比为1∶1、2∶1、3∶1和4∶1的复合膜GOT1、GOT2、GOT3和GOT4以及氧化石墨烯和二氧化硅纳米粒子质量比为1∶1、2∶1、3∶1和4∶1的复合膜GOS1、GOS2、GOS3和GOS4。通过SEM、EDS、XPS和GIWAXS方法对GOT复合膜和GOS复合膜进行了分析表征,结果表明,氧化石墨烯和纳米粒子均匀负载在聚酰胺纳滤膜表面。研究了复合膜的性能,并推测了复合膜的净水机理。其中GOT复合膜在0.75 MPa下水通量可达50 L·m-2·h-1,相较于原始基膜提高了25%,显示出了最佳的水通量性能,并且在保持较高通量的同时,对盐溶液和重金属离子的截留率仍能维持在90%左右。真空抽滤-压力喷涂的方法为氧化石墨烯复合膜的制备提供一种新的工艺思路,为废水处理提供了一种更高净化效率的复合膜。
Abstract:On the surface of polyamide nanofiltration membranes(NF), two nanoparticle intercalated graphene oxide composite membranes were loaded through the method of vacuum extraction filtration and pressure spraying. The mass ratio of graphene oxide(GO) and silicon dioxide(SiO2) for the composite membranes GOS1, GOS2, GOS3, GOS4 were 1∶1, 2∶1, 3∶1, 4∶1. The mass ratio of graphene oxide(GO) and titanium dioxide(TiO2) for the composite membranes GOT1, GOT2, GOT3, GOT4 were 1∶1, 2∶1, 3∶1, 4∶1. GOT and GOS composite membranes were characterized by SEM, EDS,XPS and GIWAXS. The results indicated that GO and nanoparticles were uniformly loaded on the surface of polyamide nanofiltration membrane. The properties of the composite membranes were studied, and the water purification mechanism of the composite membranes was speculated. The water flux of GOT composite membrane can reach 50 L·m-2·h-1 at 0.75 MPa, which is 25% higher than that of the original substrate. The GOT composite membrane has the higher flux and maintain a higher flux compared with the original base membrane. At the same time, it can maintain a rejection rate of about 90% for salt solution and heavy metal ions. This topic provides a new process idea for the preparation of graphene oxide composite membranes and a composite membrane with higher purification efficiency for wastewater treatment.
[1] 刘菲,李秋瑾,乔曦冉,等.氧化石墨烯膜材料的制备与应用进展[J].化工新型材料,2018,46(10):10-13LIU Fei,LI Qiujin,QIAO Xiran,et al.Preparation and application progress in graphene oxide membrane[J].New Chemical Materials,2018,46(10):10-13(in Chinese)
[2] NAIR R R,WU H,JAYARAM P N,et al.Unimpeded permeation of water through helium-leak-tight graphene-based membranes[J].Science,2012,335(6067):442-444
[3] FALK K,SEDLMEIER F,JOLY L,et al.Molecular origin of fast water transport in carbon nanotube membranes:Superlubricity versus curvature dependent friction[J].Nano Letters,2010,10(10):4067-4073
[4] JOSHI R K,CARBONE P,WANG F,et al.Precise and ultrafast molecular sieving through graphene oxide membranes[J].Science,2014,343(6172):752-754
[5] LIAN B,DENG J,LESLIE G,et al.Surfactant modified graphene oxide laminates for filtration[J].Carbon,2017,116:240-245
[6] ABD-ELHAMID A I,ALY H F,SOLIMAN H A M,et al.Graphene oxide:Follow the oxidation mechanism and its application in water treatment[J].Journal of Molecular Liquids,2018,265:226-237
[7] 张鹏.堆叠型氧化石墨烯纳滤膜分离性能及其净水机理研究[D].长沙:湖南大学,2019ZHANG Peng.Separation performance and purification mechanisms of stacked graphene oxide-based nanofiltration membrane[D].Changsha:Hunan University,2019 (in Chinese)
[8] WU W,SHI Y,LIU G,et al.Recent development of graphene oxide based forward osmosis membrane for water treatment:A critical review[J].Desalination,2020,doi:10.1016/j.desal.2020.114452
[9] IZADMEHR N,MANSOURPANAH Y,ULBRICHT M,et al.TETA-anchored graphene oxide enhanced polyamide thin film nanofiltration membrane for water purification:Performance and antifouling properties[J].Journal of Environmental Management,2020,doi:10.1016/j.jenvman.2020.111299
[10] KIRAN J U,RONERS J P,MATHEW S.XPS and thermal studies of silver doped SiO2 matrices for plasmonic applications[J].Materials Today:Proceedings,2020,33:1263-1267
[11] 杜迎晨.氧化石墨烯/二氧化硅杂化纳滤复合膜的制备及其性能研究[D].山东青岛:青岛大学,2020DU Yingchen.Preparation and properties of graphene oxide/silica hybrid nanofiltration composite membrane[D].Shandong Qingdao:Qingdao University,2020 (in Chinese)
[12] ZHANG W,ZHANG Y,YANG K,et al.Photocatalytic performance of SiO2/CNOs/TiO2 to accelerate the degradation of rhodamine B under visible light[J].Nanomaterials,2019,doi:10.3390/nano9121671
[13] GUO S,WANG X,GAO Z,et al.Easy fabrication of poly(butyl acrylate)/silicon dioxide core-shell composite microspheres through ultrasonically initiated encapsulation emulsion polymerization[J].Ultrasonics Sonochemistry,2018,48:19-29
[14] TONG X,SONG F,LI M,et al.Fabrication of graphene/polylactide nanocomposites with improved properties[J].Composites Science and Technology,2013,88:33-38
[15] 阮文科,谢木标,彭兰贞,等.纳米TiO2掺杂LaB6改性PVB树脂的薄膜制备及性能[J].电镀与涂饰,2020,39(12):795-800RUAN Wenke,XIE Mubiao,PENG Lanzhen,et al.Preparation and properties of the film of PVB resin modified with nano-TiO2-doped LaB6[J].Electroplating & Finishing,2020,39(12):795-800(in Chinese)
[16] 韩敏,李静,徐凌秋,等.磁光Fe3O4@SiO2@CdS复合材料的制备及表征[J].化学研究,2021,32(1):38-43HAN Min,LI Jing,XU Lingqiu,et al.Preparation and characterization of the magnetic-optical Fe3O4@SiO2@CdS composite[J].Chemical Research,2021,32(1):38-43(in Chinese)
[17] 刘扬,王琛,冯伟忠,等.PVA/SiO2/GO复合夹层结构纳滤膜的制备及其性能[J].现代纺织技术,2022,30(1):78-89LIU Yang,WANG Chen,FENG Weizhong,et al.Preparation and properties of sandwich structure PVA/SiO2/GO composite nanofiltration membrane[J].Advanced Textile Technology,2022,30(1):78-89(in Chinese)
[18] WANG Q,ZHAO G,LI C,et al.Orderly stacked ultrathin graphene oxide membranes on a macroporous tubular ceramic substrate[J].Journal of Membrane Science,2019,586:177-184
[19] 丁善刚.TiO2改性聚吡咯复合纳滤膜的制备及性能研究[D].哈尔滨:哈尔滨工业大学,2015DING Shangang.Fabrication and performance study of TiO2 modified polypyrrole composite nanofiltration membrane[D].Harbin:Harbin Institute of Technology,2015 (in Chinese)
[20] COTE L J,KIM J,TUNG V C,et al.Graphene oxide as surfactant sheets[J].Pure and Applied Chemistry,2010,83(1):95-110
[21] VERMA P,SAMANTA S K.Microwave-enhanced advanced oxidation processes for the degradation of dyes in water[J].Environmental Chemistry Letters,2018,16(3):969-1007
[22] 牛敬苒,邓会宁,张伟,等.二氧化钛调控基膜结构对氧化石墨烯复合膜性能的影响[J].化工学报,2020,71(6):2850-2856NIU Jingran,DENG Huining,ZHANG Wei,et al.Regulation of support structure by TiO2 deposition and its effect on performance of GO membranes[J].CIESC Journal,2020,71(6):2850-2856(in Chinese)
基本信息:
DOI:10.13353/j.issn.1004.9533.20210840
中图分类号:X703;TQ051.893
引用信息:
[1]周建敏,李非,费莉婷,等.纳米粒子/氧化石墨烯改性复合膜制备及其分离性能研究[J].化学工业与工程,2023,40(02):104-113.DOI:10.13353/j.issn.1004.9533.20210840.
基金信息:
大学生创新创业训练计划项目(X202110080047); 河北省自然科学基金项目(E2020202020); 河北省高等学校科学技术研究项目(QN2019048); 国家重点研究发展计划项目(2016YFB0600504); 教育部创新团队发展计划项目(IRT14R14); 河北省现代海洋化工技术协同创新中心项目(冀教科[2013]37号); 基于工学并举的“海水提钾”一体化教学资源构建(202002046010); 基于科教融合的海洋技术专业教学资源构建及应用探索(2020GJJG029)